SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 301 Microbial Genetics (Effective from June 2008)

Unit:1

- Model systems for studying microbial genetics (*E.coli & Yeast*)
- Nature of gene structure and functions.
- Melting curve of DNA and Tm value determination
- Buoyant density of DNA and its relationship with mole % G + C content in DNA.
- Organization of Eukaryotic chromosome & mechanism
- Gene Transcription as 1st step of gene expression Molecular mechanism of transcription, Role of RNA polymerase, Initiation, Elongation and Termination of RNA synthesis, Post-transcriptional modification of RNA.
- RNA dependent synthesis of RNA & DNA.

Unit:2

- Replication of DNA:
 - Conservative, Semi-conservative and dispersive mode of replication.
 - Messelson and Stahl experiment.
 - DNA Topology (Super coiling of DNA and Linking number)
 - Enzymes involved in replication of DNA.
 - Molecular mechanism of chromosome replication
 - Models of chromosome replication Cairn's model, Rolling circle model.
 - Replication of eukaryotic DNA.

Unit:3

- Translation and Regulation of gene expression:
 - Genetic code:
 - Basic feature of genetic code (biological significance of Degeneracy, Wobble hypothesis, genes within genes, overlapping genes) and Deciphering of genetic code.
 - Gene translation :
 - Ribosomes : their general nature, structure and role in protein synthesis, charging of t-RNAs, initiation, elongation and termination of protein synthesis in prokaryotes.
 - Posttranslational modification of polypeptides.
 - Regulation of gene expression (Lac Operon).

- DNA mutation and Repair:
 - Types of mutations.
 - Evidence of spontaneous nature of mutation Fluctuation test, Newcomb's experiment and Replica plating.
 - Methods of isolation of auxotrophic mutants, drug resistant mutants and phage resistant mutants.
 - Mode of action of physical, chemical and biological mutagens (UV rays, Nitrous acid, 5-bromouracil. 2-aminopurin, EMS, EES and Mu phage).

- Reversion of mutation: True reversion, Suppressionand types of suppressor mutation.
- DNA repair mechanisms (Photo reactivation, Excision, Mismatch, SOS repair and dealkylation repair).
- Mutagenecity and carcinogenicity test: AMES test.

- Genetic Recombination:
 - Types of recombination, Holiday model of recombination.
- Modes of gene transfer in bacteria:
 - Transformation: Natural transformation (*Streptococcus pneumoniae* & *Haemophilus influenzae*) competence, DNA uptake, role of natural transformation, artificially induced competence, application of transformation.
 - Conjugation: self transmissible plasmids, F-factor, Hfr and F⁺ strains, process of conjugation, chromosome mobilization, conjugation system in Gram positive bacteria, interrupted mating and mapping of gene.
 - Transduction: generalized and specialized transduction (phage P1 and lambda along with molecular mechanism).
 - Transposons: Structure and types of bacterial transposons- replicative (Tn_3) , non-replicative (Tn_{10}) , mechanism of transposition.

Unit : 6

- One step groth experiment, Single burst experiment, Doermann's premature lysis experiment.
- Organization of λ genome.
- Multiplication of λ phage (Decision between lytic and lysogeny cycle)
- Phage mutant (Plaque type mutant, Host range mutant and Conditional lethal mutant)
- Phenotypic mixing.
- Host induced modification.
- Viral Complementation.
- Viroids and Prions.

References:

- 1. Molecular Biology of Gene Watson et al.
- 2. Genes VI and VII B. Lewin
- 3. The genetics of Bacteria and their Viruses William Hays.
- 4. Molecular Genetics Stent & Calendar
- 5. Molecular Biology David Freifelder.
- 6. Microbial Genetics David Freifelder.
- 7. Microbiology Prescott, L. M.
- 8. General Microbiology Stanier, R. Y.
- 9. Principles of Biochemistry Lehninger, A.
- 10. Biochemistry Stryer, L.
- 11. Biochemistry Voett & Voett.

SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 302 Tools And Techniques in Molecular Biology (Effective from June 2008)

Unit:1

- Basic Organization of Computer (Hardware, Software, Bit, Byte, Computer memory, Binary code, Binary system)
- Biostatistics :
 - Principles of Biostatistics, classification of data, Tabulation and Graphical representation.
 - Measure of Central tendency, Mean, Mode, Median Merits and Demerits.
 - Measure of dispersion range, Mean deviation, variance and standard deviation.
- Bioinformatics :
 - Introduction to Bioinformatics.
 - Databases.
 - Applications of Bioinformatics.
- **Unit : 2**
 - Colorimetery And Spectrophotometery :
 - Principle, Instrumentation method and applications of UV-Visible specroscopy, Atomic absorption Spectroscopy, Flame photometery, IR spectroscopy.
 - Electrophoresis :
 - Principle, Support media, method and applications of electrophoresis separation of protein and nucleic acids (PAGE, SDS-PAGE, Agarose, IEF).

Unit:3

- Chromatography :
 - Introduction, definition and types of chromatography, general principles underlying chromatographic techniques, working and applications.
 - Thin layer Chromatography.
 - Adsorption chromatography.
 - Ion exchange chromatography.
 - Molecular sieve chromatography.
 - Gas liquid chromatography/ Gas solid chromatography.
 - HPLC
 - Affinity chromatography.
- Centrifugation :
 - Basic principles of sedimentation.
 - Methods and applications of density gradient centrifugation (Rate zonal and Isopycnic) and ultracentrifugation (Introduction and applications).

- Radio activity and Measurement :
 - Nature of radioactivity, safety aspects and applications.
- Immunological techniques :

- Immunodiffusion, Immunoelectrophoresis.
- RIA, ELISA, Western blotting, Immunofluorescence.
- Immobilization of enzymes and cells methods and applications.
- Biosensors their Principle, method and applications.
- Protein purification case study of membrane bound and soluble protein purification.

- Outline of genetic manipulations.
- Isolation of Nucleic acids.
- Restriction Endonucleases Classification and applications.
- Ligases and Ligation (Cohesive and Blunt end ligation).
- Cloning Vectors :
 - Properties of vectors, Plasmid, phage, cosmids, phagemids, BAC and YAC.
- Polymerase Chain Reaction basic process, advantages, limitations and applications.
- Concept of genomic and c-DNA library preparations.
- Methods for introduction of DNA into host cell: transformation, transduction, transfection, electroporation and electron gun.

Unit : 6

- Molecular tools for genetic analysis :
 - DNA fingerprinting, DNA Foot printing, RFLP, Northern and Southern hybridization.
- Introduction to Oligonucleotide probes, labeling of probes.
- Detection of recombinant clones colony hybridization, FISH, use of reporter gene, Marker inactivation.
- Introduction to Genomics and Proteomics.
- DNA and protein sequencing.
- Concept of Microarray.
- Application of genetic engineering.

References :

- 1. Biotechnology and Genetic Engineering P.K. Gupta
- 2. Methods in Biostatistics B. K. Mahajan
- 3. Computer fundamentals P.K. Sinha
- 4. A Biologist Guide to principles and techniques of practical biochemistry Wilson & Goulding
- 5. Practical Biochemistry and Molecular Biology Wilson & Walker
- 6. Analytical Biochemistry Separation techniques P. Palanivelu.
- 7. Instrument and Analytical techniques Chatwal and Anand
- 8. Microbiology Prescott, L. M.
- 9. Immunology Janis Kuby
- 10. Medical Microbiology Ananthnarayan and Panicker

- 11. Genomes 2 T. A. Brown
- 12. Biotechnology B. D. Singh
- 13. Lehniger's Biochemistry Nelson and Cox
- Biochemistry Stryer, L.
 Bioinformatics A Beginners Guide Notredam and Clavarie.
- 16. www.Expasy.com
- 17. www.ncbi.n/m.nih.gov

SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 303 Microbial Biochemistry (Effective from June 2008)

Unit:1

- Carbohydrate and Lipid metabolism.
 - EMP, PP & ED pathway of glucose catabolism.
 - Reaction and energies of TCA cycle and its importance.
 - Amphibolic nature of TCA, Anapleuretic reaction and glyoxylate cycle.
 - Regulation of glycolysis and TCA cycle.
 - Beta-oxidation of saturated and unsaturated fatty acids and its energetics.
- Biosynthesis:
 - Gluconeogenesis.
 - CO₂ fixation Calvin Benson cycle.
 - Biosynthesis of saturated and unsaturated fatty acids.

Unit:2

- Amino acids and Nucleic acid metabolism:
 - Biosynthesis of amino acids: Aspartate family and Aromatic family
 - de Novo synthesis and Regulation of purine and pyrimidine ribonuceotides.
 - Formation of deoxy ribonucleotides.
- Catabolism:
 - Transamination, oxidative deamination, decarboxylation.
 - Urea cycle , Stickland reaction.
 - Catabolism of purines and pyrimidines.

Unit:3

- Energy metabolism:
 - Introduction to metabolism.
 - Methods of studying intermediary metabolism
 - Principles of Bioenergetics
 - ATP (Structure, generation, & role)
 - Modes of ATP generation in bacteria: ETC –components and organization.
 - Oxidative phosphorylation inhibitors of oxidative phosphorylation.
 - Chemiosmotic theory
 - ATP synthase
 - Fermentation and substrate level phosphorylation
 - Anaerobic respiration.
 - Bacterial photosynthesis: photosynthetic apparatus and photophosphorylation.

- Enzymology:
 - Structure and Properties of enzymes
 - Classification of enzymes

- Strategies for purification of enzymes
- Introduction to active site and enzyme specificity
- Mechanism of Lysozyme.
- Kinetics of first and zero order reaction
- Factors affecting the enzyme action
- M-M equation-Determination of Km, Vmax and Kcat. Double reciprocal plots.
- Enzyme activation and enzyme inhibition.
- Multisubstrate reaction (Random orders, sequential and pingpong).
- Role of vitamins as co-enzymes.
- Regulation of enzyme action (Allosteric enzyme and its regulation. Feed-back inhibition and its variation, Covalent modification, Zymogen).
- Introduction to isoenzymes.

- Membrane Transport:
 - Membrane structure: fluid mosaic model, Fick's law
 - Nutrient Transport across Membrane: simple diffusion, porins facilitated diffusion, porter molecules, active transport, Sodium-potassium pumps, group translocation.
 - Siderophores (metal transport)
 - Membrane transport receptors.
 - Signal peptides
- Bacteriorhodopsin.
- Biosynthesis of peptidoglycan

Unit:6

- Concept of chemotherapy:
 - Nature of target site/biochemical system affected by antimicrobial agents
 - Antibiotics inhibiting growth of microorganisms-penicillin, cycloserine. bacitracin, streptomycin. Fusidic acid, puromycin, tetracycline. actinomycin, chloramphenicol, polymixin, amphotericin-B. amantidine, acyclovir, zidovudine, (AZT) and sulphonamides.
 - Mechanism of resistance to antibiotics (penicillin and streptomycin)
- Some related aspects of metabolism in specific microbial system
 - Bioluminescence
 - Chemotaxis
 - Energy metabolism in methanogens
 - Assimilatory reduction of nitrates and sulphate

Reference:

- 1. Principles of Biochemistry Lehninger 2nd edition
- 2. Biochemistry Zubay, G. L.
- 3. Biochemistry Stryer, L.
- 4. General Microbiology Stanier, R. Y.
- 5. Principles of Microbiology Ronald M. Atlas
- 6. Biochemistry Voett and Voett
- 7. Elimentary Microbiology H. A. Modi

- Microbiology Prescott, L. M.
 Microbiology Vol. I & II Powar & Daginawala
 Biochemistry S. Satyanarayana
 www.expasy.ch/tools/pathways

SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 304 Immunology and Clinical Microbiology (Effective from June 2008)

Unit:1

- Micro flora of healthy human host.
 - Role, origin & establishment.
 - Normal flora of different systems.
 - Gnotobiosis.
- Host Microbe interactions.
 - Pathogenicity, virulence & infection.
 - Microbial adherence.
 - Penetration of epithelial layers.
 - Microbial virulence factors.
 - Nonspecific defences Phagocytosis, Inflammation, Complement.
- Natural & Acquired immunity.

Unit:2

- Antigen : properties & Types.
- Antibodies : Structure of Immunoglobulin
 - Immunoglobulin classes
- Antigen-Antibody Reactions :
 - General features
 - Zone phenomenon (Lattice hypothesis)
 - Types of Antigen Antibody reactions:
 - * Precipitation Reaction in liquid medium: ring test, slide test & tube test
 - * Agglutination-slide & tube agglutination test, Bacterial agglutination, Hemagglutination, Passive agglutination, agglutination inhibition test
 - * Toxin-Antitoxin reactions
 - * Complement fixation test

Unit:3

- Lymphoreticular System :
 - Primary & Secondary immune organs.
 - Cells of lymphoreticularsystem.
- Immune response : Humoral & cell mediated immune responses.
 - Primary & secondary responses.
- Immune response against T-cell dependent antigens (MHC restriction, APC, Antigen presentation, T & B Cell activation, Cytokines)
- Factors influencing Antibody production.
- Monoclonal Antibodies.
- Clonal selection Theory.
- Genetic basis of Antibody diversity.

Unit :4

• Vaccines

- Immunodeficiency
- Autoimmunity
 - Mechanism
 - Classification of Autoimmune diseases
- Hypersensitivity.
- Transplantation Immunology
 - Classification of Transplants.
 - MHC antigens, HLA typing,
 - Host Vs Graft reaction, Graft Vs Host reaction
 - Immunosuppression.
- Tumor immunology.
- Unit : 5
 - Hematology: Components of blood & their functions, Hematopoiesis, Homeostasis and anticoagulants.
 - Immunohematology ABO & Rh blood group system; Blood grouping, cross matching, Coomb's test.
 - Principles of blood banking & safety in blood transfusion.
 - Clinical Biochemistry.
 - Kidney function tests, Significance of Creatinine, urea & uric acid.
 - Liver function tests: Significance of Bilirubin SGPT, SGOT, Alkaline phosphatase, proteins, albumin and globulin.
 - Cardiac function tests: Phosphokinase, Cholesterol, Triglycerides, Serum electrolytes & blood sugar.
 - Clinical Microbiology:
 - Collection of specimen, handling & transport.
 - Methods of diagnosis: Microscopic, cultural application of biochemical reactions,
 - Phage typing, Antibiogram

- Principles of Epidemiology.
- Causative agent, Symptoms, pathogenesis, transmission, Laboratory diagnosis, Treatment and prevention of
 - Malaria
 - Tuberculosis
 - Enteric fever (Typhoid)
 - AIDS.

Reference:

- 1. Textbook of Microbiology Ananthnarayan & Paniker
- 2. Medical Microbiology N. C. Dey
- 3. Kuby Immunology Goldby, Kindt & Osborne
- 4. Medical Laboratory Technology K. L. Mukherjee
- 5. Textbook of Medical Laboratory technology P. B. Godkar
- 6. Human Physiology chaterjee, C. C.
- 7. Microbiology Pelczar & Reid
- 8. Microbiology Prescott, L.

SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 305 Agricultural and Environmental Microbiology (Effective from June 2008)

Unit:1

- Soil Microbiology:
 - Microbial flora of soil
 - Rhizosphere
 - Humus (Definition, Decomposition, Formation, Significance)
 - Carbon Cycle
 - Green House effect
 - Phosphorus Cycle
 - Sulfur Cycle
 - Iron Cycle
 - Methods of studying soil flora

Unit:2

- Nitrogen Cycle
- Symbiotic and Asymbiotic N₂ fixation
- Nitrogenase (structure, mechanism, /regulation)
- Biofertilizers :
 - Definition, Azotobacter, Rhizobium (including production aspects)
 - Phosphate solubilizing microorganisms
 - Organic matter decomposer
- Biopesticides

Unit:3

- Microbial Ecology
 - Communities and Ecosystems
 - Population interactions
 - Consortia & Biofilms
 - Study of non-culturable microorganisms.
 - Winogradsky's column

- Concept of xenobiotics and recalcitrance.
- Biomagnification.
- Biodegradation of environmental pollutants
- Biodegradable polymers
- Biodeterioration of wood, paints and metals
- Bioleaching of copper

- Water and waste water microbiology:
 - The microbial community in marine and freshwater environment
 - Microbiological analysis of water (include role of indicator microorganism from water analysis)
 - Waste water characteristics : physical characteristics, total solids. Inorganic components Gases
 Organic components (BOD, COD & TOC)
 - Waste water treatment process
 - Solid waste disposal: Sanitory land fills, Composting.

Unit:6

- Plant Microbe interactions
 - General symptoms of plant diseases
 - Pathogenesis, Enzymes, Toxins.
 - Biochemical defense mechanism in plants
 - Transmission of plant diseases

References :

- 1. Soil Microbiology M. Alexander
- 2. Advances in Agriculture Microbiology N. S. Subbarao
- 3. Plant Pathology R. S. Malhotra
- 4. Plant Pathology R. S. Singh
- 5. Modern Plant Pathology Bilgrami & Dube
- 6. Principles of Microbiology R. M. Atlas
- 7. Microbiology Pelczar and Reid
- 8. Biological waste water treatment system Horan
- 9. Waste water Engineering Eddy Metcalf
- 10. Biofertilizers and Organic farming Vyas & Modi
- 11. Microbiology Prescott, L. M.
- 12. Microbial Biogeochemistry J. E. Zajic
- 13. Introduction to Biodeterioration D. Allsopp & Kenneth J. Seal

SARDAR PATEL UNIVERSITY T. Y. B. Sc. - MICROBIOLOGY MI – 306 Food and Industrial Microbiology (Effective from June 2008)

Unit : 1

- Characteristics of industrially important microorganisms.
- Screening: Primary screening (organic acid, Enzymes, Vitamins & Amino acid producers), Secondary screening and its significance.
- Strain improvement strategies: Selection of natural variants, induced mutations (Physical & Chemical Mutagen), recombination (in bacteria, parasexual cycle, protoplast fusion) & genetic engineering.
 Improvement of strain by modifying properties other than the yield of product.
 Regulations of metabolic pathways.
 Isolation of mutants producing primary & secondary metabolite.

Unit:2

- Ideal characteristics of fermentation medium.
- Raw materials of fermentation medium- C, N, Minerals, precursors, metabolic regulators and water.
- Fermentor design.
- Types of Bioreactors Stirred tank reactors, Fluidized bed reactors, Air-lift fermentor.
- Types of fermentation: Surface & submerged fermentation (batch, fed-batch and continuous fermentation) & solid state fermentation.
- Monitoring & Control of process parameters: Temperature, pH, dissolved oxygen, pressure and foam.

Unit:3

- Inoculum development and its addition.
- Introduction to mass transfer of oxygen and factors affecting it.
- Sterilization of medium.
- Sterilization of air.
- Sampling.
- Antifoam agents
- Scale up.

- Separation of cells by filtration and centrifugation.
- Disruption of microbial cells.
- Product recovery by solvent extraction, precipitation, reverse osmosis, ultra filtration and chromatography.
- Quality control of fermentation products : LAL tests for pyrogen testing. Sterility testing.

- Bioassay of Fermentation products.
- Fermentation economics.

Fermentative production of:

- Penicillin and its conversion to semisynthetic penicillin.
- Glutamic acid.
- Cyanocobalamine.
- Acetone-butanoi-ethanol.
- Amylase.
- Gluconic acid.
- Beer production.
- Vinegar production.

Unit:6

- Extrinsic and Intrinsic parameters affecting food spoilage.
- Principles of food preservation: Asepsis, removal of microorganisms, anaerobic condition, high and low temperature, dessication, use of chemical preservatives, food additives and radiation.
- Food poisoning by *Clostridium botulinum* and *Staphylococcus aureus*.
- Spoilage of milk.
- Production of cheese, baker's yeast.

Reference :

- 1. Industrial Microbiology Casida, L. E.
- 2. Industrial Microbiology A. H. Patel
- 3. Industrial Microbiology Prescott & Dunn
- 4. Principles of Fermentation technology Stanbury, Whitaker and Hall
- 5. Microbial technology Vol. I & II Pepplar and Perlman
- 6. Food Microbiology James Jay
- 7. Food Microbiology Frazier, W. C.

SARDAR PATEL UNIVERSITY Microbiology Practical MI-307 (Effective from June 2008)

- 1. Study of microbiocidal effect of UV rays.
- 2. Isolation of antibiotic resistant mutants by grid technique.
- 3. Isolation of auxotrophic mutants by grid technique.
- 4. Titration of bacteriophage.
- 5. Determination of generation time of E.coli.
- 6. Bioassay of streptomycin.
- 7. Isolation of *Azotobacter*.
- 8. Isolation of Rhizobium.
- 9. Isolation of Actinomycetes.
- 10. Screening of Amylase and Organic acid producing organisms.
- Pure culture study of E.coli, Enterobacter aerogenes, Salmonella typhi,
 S. typhi para-B, Proteus vulgaris, Pseudomonas aeruginosa.
- 12. Bacteriological analysis of water :
 - Qualitative & Quantitative analysis.
 - Detection of coliform (presumptive, confirmed and completed test).
- 13. Bacteriological analysis of milk Qualitative & Quantitative.
- 14. Demonstration of sterility testing.
- 15. Demonstration of Winogradsky column.

SARDAR PATEL UNIVERSITY Microbiology Practical MI-308 (Effective from June 2008)

- 1. Blood grouping and cross matching for Blood transfusion.
- 2. Hemoglobin estimation by Sahli's method.
- 3. Total count of W.B.Cs.
- 4. Differential count of leukocytes.
- 5. Widal slide agglutination test qualitative (demonstration of quantitative test)
- 6. Estimation of blood glucose by GOD/POD method.
- 7. Estimation of serum urea.
- 8. Estimation of total serum cholesterol.
- 9. Estimation of serum Creatinine.
- 10. Chemical analysis of urine.
- 11. Study of antibiogram of *Salmonella typhi* and determination of MIC of an effective antibiotic.
- 12. Demonstration of immunodiffusion and Immunoelectrophoresis.
- 13. Study of permanent slides of malarial parasites.

SARDAR PATEL UNIVERSITY Microbiology Practical MI-309 (Effective from June 2008)

- 1. Estimation of reducing sugar by DNS method.
- 2. Estimation of reducing sugar in Jaggery by Cole's method.
- 3. Protein estimation by Folin's method.
- 4. Ethanol estimation by Dichromate method.
- 5. Ribose estimation.
- 6. Measurement of rate of aeration by Sulphite oxidation method.
- 7. Determination of dissolved oxygen by Wrinkler's method.
- 8. Estimation of gluconic acid by titrimetric method.
- 9. Study of progress curve of an enzyme.
- 10. Separation and identification of amino acids by TLC.
- 11. Demonstration of isolation of chromosomal DNA.
- 12. Introduction to Public Health Management in India.